
Team No. 11

Jarod Davis, Chase Stump, Zachary Atkins, Minye Wu, William Burdick

Frontier Unknown

Synopsis

A medium sized multiplayer 3D spacecraft shooter game focusing on utilizing high quality graphics and

ray tracing technology built with the Unity engine.

Description

 • Why is the project being undertaken?

Our intentions for this project are to gain experience working with the Unity Engine in-depth

and develop a professional-level product. Further, we aim to have loads of fun, while creating a

polished game that could end up on the marketplace in order to pass that fun on to others.

 • Describe an opportunity or problem that the project is to address

We seek to address the cabin fever produced from people being locked up without social

interaction due to Covid-19. We will also expand the co-operative/competitive ship battle genre

established by games like Guns of Icarus with new mechanics and features and unique setting.

Further, we will bring new graphics technology to the genre through the use of DirectX 12 RTX

raytracing.

. • What will be the end result of the project?

We will produce a medium scale, team-based multiplayer game that encourages effective

cooperation and large-scale tactics in a space combat environment. Ideally, this will be a

professional-level game that could potentially be sold for a profit or released online for free.

Project Milestones

First semester:

1. Use-Case and UML diagrams completed(10/26)

2. Networking choice and online multiplayer establishment (11/4)

3. Gameplay logic and fundamentals (11/23)

4. Physics and collisions (12/11)

Second semester:

5. Prototype models completed (2/28)

6. Shader and raytracing implemented (3/15)

7. Models & SFX Integration (4/15)

8. Full gameplay completed (5/1)

9. Presentation and final documentation completed (5/14)

 Gantt Chart included in the submission.

Project Budget

• Hardware, software, and/or computing resources

• Unity 2020.1.9f1 LTS (free)

• Perforce's Helix Core (free tier, may upgrade)

• Unity assets (tbd, depending on amount of time for asset development)

• Estimated cost: $200-400

• Vendor: Unity Asset Store, Perforce

• Special training: Unity, MLAPI, network coding, asset modeling

• When they will be required: Spring semester

Preliminary Project Design

How the Software Works

 There are two major components of how our game works. First, users will be able to customize

their ships through the use of various weapons, shields, and miscellaneous attachments. Each of these

will have a number of strengths and weaknesses, encouraging teams to cooperate in order to have a

well-balanced loadout. Ships will be balanced by means of a weapon slot system. In this system,

different ships will have different capacities to carry certain weapons. For example, small ships will not

be capable of handling heavy duty weapons but may carry a few medium weapons. Larger ships will be

capable of handling heavy weapons but may have limitations on the number of heavy weapons they can

carry. See the attached Game Mechanics document

for a full enumeration of the components we intend

to support.

The second main component are the player

roles. There will be three roles: Pilot, Engineer, and

Gunner. Within these roles, players will be able to

select different perks which either provide increased

specialization or some boon which provides value to

their team. Additionally, players are most effective

when doing tasks that relate to their roles. For

example, a Gunner may have access to a number of

ammunition types, be able to reload the guns faster,

and have better accuracy when firing. On the other

hand, a Pilot may be able to shoot the guns, but will

excel in maneuvering the ship through the use of

speed boosts and will also be able to issue commands to the other crewmates in order top prioritize

particular issues during the game.

 From the player point of view, we intend to support a Ship Editor, as well as various Lobby

related features. These include: create a new lobby, add/request certain ship types to a lobby,

text/voice chat, and game mode controls. Further, the ship editor will allow customizations of armor,

guns, chassis, and shields. A more complete description of the intended components is included in the

attached Team 11 Game Mechanics v1 document in the submission and in Figure 2. Moreover, a use

case diagram for the player is given in Figure 1.

Figure 1: Player Use Case Diagram

Figure 2: A Component Diagram of the Ship

The win conditions of the game are based on a ticket system. Each team is assigned an equal

number of tickets. Destroying opposing ships or completing objectives reduces the opponent’s ticket

count. Upon ship destruction, that player’s team immediately loses tickets corresponding to the ship

size. Also, ships are expected to take damage in the game without being destroyed. Ship size and armor

dictates how much punishment a ship can take before destruction. Ships may lose guns or have a

damaged hull. In this case the ships can be repaired at the cost of that team’s ticket count. A timer will

be implemented to encourage more aggressive play and prevent a stall or slow game. The team with the

most tickets at the end of the match will win if each team has tickets remaining.

Design Constraints

The majority of our constraints come from the use of the Unity game engine. First, we consider

networking for our game. We must use one of Unity’s multiplayer networking frameworks; the options

in this regard has expanded dramatically since the fall. Specifically, the newly acquired MLAPI

networking solution accomplishes our requirements of 32+ player games. Further, it does so without

requiring the use of the new DOTS framework, which proved to be a large blocking issue in the fall. For a

further analysis of our multiplayer constraints, we consider the flowchart released by Unity for

determining the best multiplayer solution for Unity projects, given in Figure 2. First, in order to deliver

the cooperative experience we desire for our game, we need to support at least 32 player games.

Following the flowchart, this means that we need a dedicated game server (DGS) solution. This leaves us

with two main options: utilizing the preview DOTS-Netcode stack or using MLAPI/Mirror. Since Mirror is

not officially supported, we decided that MLAPI was preferable.

Next, we will consider the platform constraints of our project. Since we are designing a PC game,

support for the Windows operating system is necessary. While support for Linux and MacOS would also

be beneficial to the success of our game, the player bases on those platforms tends to be far smaller, so

we would not consider supporting these platforms to be a design constraint.

 Another constraint we must consider is the project management and version control platform

we choose to use. Due to the nature of game development with Unity, tradition source control

management platforms such as GitHub or BitBucket tend to provide insufficient granularity for file

control, leading to a large amount of merge conflicts if multiple developer are working concurrently. As

such, we have opted to utilize the Perforce Helix Core source control system. Perforce has built-in Unity

integration, allowing individual files to be changed and submitted to source control seamlessly,

preventing the aforementioned merge conflict issues. However, the use of Helix Core has also

introduced a number of internal project constraints. For example, Helix Core does not come with any

free hosting solutions, so we have opted to run our versioning server on a server owned by a team

member. This means that server maintenance and management must be accounted for in development

time and allocation moving forward with our project, presenting a time constraint. Additionally, in order

to best utilize this version control system, we will need to commit time as a team to assess the best

practices for Helix Core version control, as they differ in some aspects from traditional Git approaches.

Ethical Issues

One ethical issue we may have is ACM code of 1.6, which is ‘Respect privacy.’ Respect privacy is

very important for our project since we are designing a medium sized online multiplayer game and there

will be a lot of user data gathered. We will make sure only the minimum amount of personal

information necessary will be collected in our system, and the retention and disposal periods for those

data will be communicated clearly to data subjects. We will need to make sure those data won’t be used

for any purposes without the user’s consent.

The other ethical issue we may have is ACM code of 2.6, which is ‘Perform work only in areas of

competence.’ For this project, we are going to implement some challenging technologies that we might

not have a large amount of experience before. Hence, we will make sure to do as much research as we

can and spend enough time acquiring the necessary competencies before pursuing a certain assignment.

Figure 3: Unity Networking Flowchart
https://blogs.unity3d.com/2020/09/08/choosing-the-right-netcode-for-your-game/

https://blogs.unity3d.com/2020/09/08/choosing-the-right-netcode-for-your-game/

If at any time during the game development we find ourselves lack a necessary expertise, we will pause

our work assignment, try to obtain the necessary competencies, and get back to the work assignment

afterward.

Intellectual Property Issues

The main intellectual property issues we may have relate to Patent and Copyright. We will make

sure to ask for consent from the patent owners and give credit to them if we are going to use any

patented technologies. We may need to pay extra attention to some games on the market that appear

to have similar ideas or design to ours.

We will respect the copyright of technologies we are going to use, for example, Unity, MLAPI,

Blender, and Helix Core. We will use artworks and assets that are either created by us or licensed for our

team.

Change Log

• DOTS NetCode -> MLAPI, Removed dependency on DOTS

This change was due to the difficulty to find reliable documentation and support for the DOTS

framework. It is still in early stages of development and thus contains many bugs hindering the

development of the project. The MLAPI is has significant support by the community and by Unity, and

the development process is streamlined for quicker production.

